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Abstract: This article is devoted to the synthesis of composite control for nonlinear singularly perturbed 

system using feedback linearization (FL). The idea of this method consists in converting the original nonlinear 

system into a linear one by means of state feedback and coordinate transformation. Then, methods of control 

theory for linear systems are used for system design. If the original nonlinear system cannot be linearized 

exactly by state feedback, the method of approximate feedback linearization (AFL) is used. The essence of 

approximate feedback linearization methods lies in the feedback linearization only of the some part of the 

original nonlinear system (not the entire system). In this paper, we propose a method of approximate feedback 

linearization control of nonlinear singularly perturbed (SP) systems. Proposed method is based on the 

decomposition of the original SP system and the construction of control input in the form of asymptotic 

composition of FL controls for slow and fast subsystems.  The resulting AFL control is obtained in the form of 

composite control. The application of the proposed approach is illustrated through the speed control of a DC 

series motor.  

 

 

Key-Words: approximate feedback linearization, singularly perturbed system, composite control, 

decomposition. 

 

1 Introduction 
Objective complexity of real problems, high 

requirements to modern control systems make it 

necessary to use complex mathematical apparatus, 

and information technology. For a closer 

approximation to reality in the mathematical 

description of processes and systems it is necessary 

to take into account various factors (non-linearity, 

small parameters, uncertainties and other). In place 

of the one-dimensional linear models come 

multidimensional nonlinear models. The methods of 

modeling, analysis and synthesis of nonlinear 

control systems are developed [1-7]. 

One of the most common methods of nonlinear 

control systems synthesis is the method of feedback 

(external) linearization [1-4]. The idea of this 

method consists in converting the original nonlinear 

system into a linear one by means of feedback. 

Then, methods of control theory for linear systems 

are used for system design. 

The applicability of the method of external 

linearization guaranteed under strict conditions of 

controllability and involutivity for the nonlinear 

system, that is not always true. In this situation, the 

method of AFL is used [8-12]. 

The most widely used approach to approximate 

linearization was based on the expansion of the 

original system in a Taylor series [8,9]. Another 

approach is presented in [10,11] is based on the use 

of the dynamic feedback concept and of the relative 

degree d-wherein d - an integer. Here the basic idea 

is to transform the dynamics equation of the system 

to linear form, in which additional terms of higher 

order than a given integer d are added. The main 

drawback of this solution is associated with an 

increase in the order of the system and the order of 

dynamic feedback. From this point of view in [12] 

presented the opposite way to approximate 

linearization, based on the idea of a Singularly 

Perturbed representation of the system and fast and 

slow motion separation. 

Multiple scales can be caused by different 

physical factors, such as the presence of small 

masses and moments of inertia, the high gain 

feedback etc (for example see [13-21]). A 

mathematical description of such systems uses small 
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parameters that multiply the time derivative of some 

state variables in the equation of the system state. 

There are numerous publications devoted to the 

analysis and design of SP systems, which are 

reviewed in [21-23]. A recent review [23] includes 

more than 500 references and demonstrates a 

growing interest of researchers in nonlinear SP 

systems and their applications. 

The problem of nonlinear SP systems control 

using FL is studied in [24-27]. In [24] a 

diffeomorphism is proposed that is independent of 

the small singular perturbation parameter. 

Moreover, this diffeomorphism should satisfy the 

slow-fast dynamics separation condition. In [25] a 

new diffeomorphism is proposed, which does not 

require compliance with the dynamics separation 

conditions. Both of the above mentioned papers can 

be attributed to the same direct approach, which 

considers the linearization of the entire SP system . 

Articles [26, 27] introduce another approach that 

is based on FL of the so-called "slow" subsystem, 

not the entire SP system. According to this indirect 

approach the original FL problem of nonlinear SP 

system is reduced to the simpler problem of FL of 

unperturbed slow subsystem. Restriction of the 

result in [26,27] is the class of nonlinear SP systems 

that are linear in control input and fast state 

variables.  

In this paper the problem of FL control is 

considered for the class of nonlinear SP system with 

nonlinear equation for slow state variables in 

general form and equation for fast state variables 

that is nonlinear only in slow state variables. We 

propose a method of AFL control based on the 

decomposition of the original nonlinear SP system 

and the construction of control input in the form of 

asymptotic composition of FL controls for slow and 

fast subsystems.  The resulting AFL control is 

obtained in the form of composite control. 

The paper is organized as follows: Section 2 

contains the formulation of FL composite control 

problem for the class of SP systems described 

above; Section 3 discusses the decomposition 

process of nonlinear SP system using standard 

singular perturbation technique; Section 4 is devoted 

to the problem of synthesis of FL control for slow 

and fast subsystems; an example of the speed 

control system development for a DC series motor 

using composite FL control is shown in Section 5; 

conclusion with the main findings and 

acknowledgements are shown in Section 6 and 

Section 7 respectively. 

2 Problem formulation 
Consider a nonlinear SP system of the type 
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where 21

21 ,
nn

RxRx   are the state variables 

vectors, 1Ru  is the scalar control input, 0  is a 

small parameter (singular perturbation). 

It is assumed that the system (1) satisfies the 

following assumptions: 

Assumption 1. The functions ),,( 211 uxxf , 

)( 121 xf , )( 122 xf  and )( 12 xg  are uniformly 

continuous and bounded, with a sufficient number 

of derivatives in their arguments. 

Assumption 2. The function 1
122 )( xf  exists for 

all 1

1
n

RDx  . 

It is necessary to transform SP system (1) to the 

"block triangular" form 
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where the first equation is independent of the fast 

state variables vector 2z . The form of the functions 

),( 11 uzF  and ),,( 212 uzzF  will be determined later. 

After the conversion of system (1) to form (2) 

the feedback linearization problem should be solved 

separately for the slow subsystem that is described 

by the first equation of system (2) and for the fast 

subsystem that is described by the second equation 

of system (2). The resulting feedback linearizing 

composite control for the original SP system (1) is 

defined as the sum of slow and fast controls 

 ,fs uuu    (3) 

where su and fu  – controls, obtained by solving the 

feedback linearization problem for slow and fast 

subsystems respectively. 

 

3 Decomposition of the system 
Conversion of SP system (1) to the "block 

triangular" form (2) is carried out using standard 

singular perturbation technique [28, 29]. Letting 

0  in system (1) and solving the second equation 

of obtained reduced system with respect to 2x , by 

assumption 1 and 2 we have 
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Substituting (4) into the first equation of system 

(1), we obtain an expression for the slow subsystem 

(via the change of variables 11 zx  ) 
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To obtain the equation of the fast subsystem we 

represent the second equation of system (1) in fast 

time scale, replacing  /t : 
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Substituting into (6) the expression for the 

composite control (3) we get the fast subsystem 

  ).)(()()()( 1221221212 fs uuxgxxfxfx   

Then applying the change of variables 
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we finally have 
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In equation (7) slow state variables vector 1z  is 

treated as a fixed parameter [28, 29]. 

 

4 Feedback linearization 
Before considering the problem of feedback 

linearization, we give the following basic notation 

[3, 4]. 

Let )(x  be a smooth function and )(xf  be a 

smooth vector field defined on 
nRX  . The scalar 

function introduced as 

 )()( xf
x

xL f



  

is so-called a (scalar) Lie derivative of scalar 

function )(x  along )(xf . 

Let )(xf  and )(xg  be smooth vector fields 

defined on X . The vector field introduced as  
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x

f
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g
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is a vector Lie derivative, often called a Lie bracket 

 ).()](),([ xgLxgxf f  

In addition, the following notation is used to 

define the Lie derivative of order k  
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4.1 Feedback linearization of slow 

subsystem 
 

Consider the slow subsystem 
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Let there exist a scalar function )( 1z . We 

define the Lie derivative of the function )( 1z  along 

the vector field ),( 11 suzF  as 
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For the Lie derivatives of higher orders we have 
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where ).(),( 11
0

1
zuzL sF    

Assumption 3. The system (8) has a relative 

degree 1nr   at the point ),( 00
1 suz , that is the next 

conditions hold: 
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 for all 1z  in a neighborhood 

of 0
1z , all su  in a neighborhood 0

su  and all rk  . 

2) 0),( 00
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Due to the above conditions the first r  Lie 

derivatives do not depend explicitly on the input: 

 10),(),( 11 11
 rkzLuzL k

Fs
k
F . 

Under the above assumptions, there exists a 

diffeomorphism [30] 
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We define the vector   with elements expressed 
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Differentiating with respect to time t  the 

variable 
1n , we obtain  

).),((),(
11

11 ss
n

Fsn uTLu 
  

The feedback linearizing control law for the slow 

subsystem (8) is obtained by solving the following 

nonlinear algebraic equation with respect to su   

 ssu  ),( . (9) 

If the equation (9) has an analytic solution 

),( ssu  , then the diffeomorphism )( 1zTs  and 
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the control law ),( ssu   transform the system 

(8) to the linear form 
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4.2 Feedback linearization of fast subsystem 
Consider the fast subsystem 

 
)).0(,()0(

,)()()(

0
10

0
2

0
22

1221222

s

f

uzhxzz

uzgzzfz




 (10) 

In this equation the slow state variables vector 

1z  is treated as a fixed parameter. 

As the system (10) is linear in the fast variables 

state vector 2z  and the control fu , the external 

linearization (via feedback) is not required. In this 

situation, the fast control fu  is selected as a 

feedback (here 11 zx  ) 
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where )( 1xG f  is designed such that 

   .,0)()()(Re 1112122 DzzGzgzf f   

The existence of )( 1xG f  satisfying the last 

inequality is guaranteed if the pair ))(),(( 12122 zgzf  

is controllable uniformly in 1z , i.e. the 

corresponding controllability Grammian is bounded 

from below by a positive-definite matrix. 

 

4.3 Feedback linearizing composite control 
The resulting composite control is determined 

from (3) by substituting the relations for the fast and 

slow control: 
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It should be noted that the feedback linearizing 

composite control (12) does not depend on a small 

parameter  . The singular perturbation parameter   

can be considered as an uncertainty in the original 

system (1) [31]. Moreover, there exists some 0  

such that  0:  the original SP system (1) 

is stable, if the slow and the fast subsystems are 

stable. In this sense, the SP system (1) with the 

composite control (12) is robustly stable with 

respect to  . 

5 Illustrative example 
As an example, consider the problem of speed 

control of DC series motor [24]. A mathematical 

model of the control problem is presented below 

 

,

,

2
LT

T

DiK
dt

d
J

UiKiR
dt

di
L






 (13) 

where i  is the current in the armature winding,   is 

the angular velocity of the motor, U  is the voltage 

in the armature circuit (control input), L  is the load 

torque. Constant parameters of the motor are [24]: 

0917.0L  H, 2.7R  Ohm, 41006.7 J  kgm
2
, 

4104 D , Nms/rad, 1236.0TK , Nm/WbА. 

The load torque is taken so )/(2
LaLmLL RRK  , 

where 173.0mLK  Nm/А, 5.2aLR  Ohm, aLR  – 

external resistor, 5aLR  Ohm.  

Following [24], we formulate the control 

problem as the problem of tracking control system 

design for angular velocity   of the DC motor, the 

reference signal is ref . 

The system (13) should be represented in the 

singularly perturbed form (1): 
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For SP system (14) the assumptions 1 and 2 are 

satisfied. The slow subsystem is: 
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Since the problem is formulated as a speed 

tracking control problem, the function )( 1z  is 

defined as  11)( zz . The system (15) will 

have a relative degree 1r , if the assumption 3 is 

satisfied, i.e. 
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Equation (9) to determine the feedback 

linearizing control law takes the form 
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The fast subsystem in this example has the form 
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The stabilizing control fu  for the fast subsystem 

according to (11) is presented in the form 
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where function )( 1zG f  is designed such that 
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that is equivalent to the inequality 
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The expression for the composite control is 

obtained from (12) 
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Since for a sufficiently small   the system (13) 

with control (18) can be approximately considered 

as 
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that the external control s  is conveniently 

implemented as a proportional controller for 

tracking error, ie 

 .,  refps eek  (19) 

The simulation results of the application of the 

composite controller (17)-(19) in the system (13) are 

shown below. Fig. 1 represents the angular velocity 

  against the reference signal ref , the transient 

response for a DC motor current i  and the response 

for control voltage U .  

Transient responses of closed loop system for 

different values of the controller coefficient pk  are 

shown in Fig. 2. The results show that the angular 

velocity corresponds to the reference signal ref , 

wherein the tracking quality increases with the 

increase of the coefficient pk . 

To demonstrate the robust properties of the 

closed loop system with respect to the parameter   

the system is modeled for different values of 

perturbation parameter 0917.0 , 5.2  and 

5.10 . Fig. 3 shows transient response and 

indicates a good quality of system tracking for the 

reference signal with the presence of uncertainty in 

the system in the form of a parameter that 

corresponds to the results in [24]. 
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Fig. 1: The simulation results for 10pk :  

angular velocity  , reference signal ref ,  

DC motor current i , control voltage U . 
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Fig. 2: Angular velocity for different values of the 

controller coefficient pk . 
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Fig. 3: Angular velocity for different values of the 

singular perturbation parameter  . 

 

6 Conclusions 
In this paper, based on the idea of a composite 

control for a class of nonlinear SP systems we 

proposed a method for the synthesis of control by 

using of feedback linearization technique.  

The advantage of the proposed method is to 

simplify the original feedback linearization problem 

for nonlinear SP system by its decomposition into 

two simpler problems: for the slow subsystem and 

for the fast subsystem. This fact is especially useful 

when the original nonlinear system is non-linearized 

via feedback. In this case the method of 

approximate feedback linearization is used [8-11]. If 

the original non-linearized system can be 

represented in the singularly perturbed form, the 

proposed method can be used as a means of 

synthesis of approximate feedback linearizing 

control.  

The efficiency of the proposed method is 

demonstrated by an example of the tracking control 

system development for angular velocity of the DC 

series motor. 

In future studies, for a closer approximation to 

reality in the mathematical description of the system 

we should take into account the presence of the 

interval uncertainty. In this case, for the synthesis of 

external linearizing feedback for uncertainties 

compensation, it is planned to use the techniques of 

parameter self-tuning and optimization [32-34]. 
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